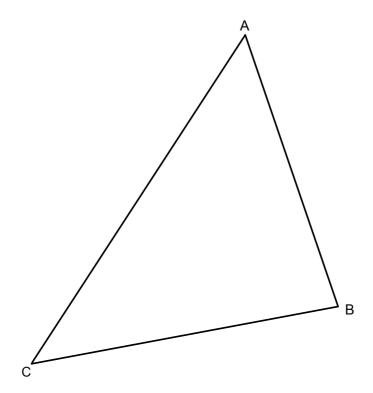


Objective To identify properties of medians and altitudes of a triangle

Construct a perpendicular line that passes through vertex A and side BC.

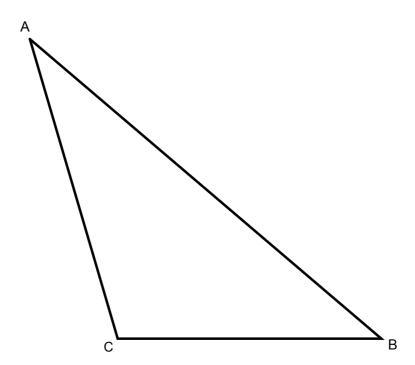

Construct a perpendicular line that passes through vertex B and side AC.

Where the two perpendicular lines intersect, label that point O.

Now construct a segment that passes through vertex C, point O, and side AB.

Where is point O located? Are there any other properties that you can find?

Activity 1


Construct a perpendicular line that passes through vertex A and side BC. (hint extend segment BC)

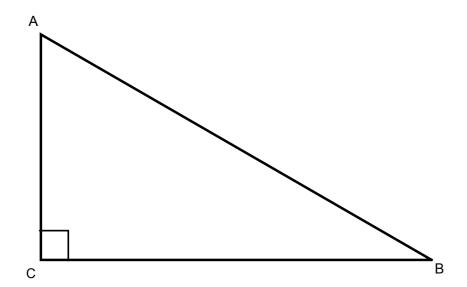
Construct a perpendicular line that passes through vertex B and side AC. (hint extend segment AC)

Where the two perpendicular lines intersect, label that point O.

Now construct a segment that passes through vertex C, point O, and side AB.

Where is point O located? Are there any other properties that you canfind?

Construct a perpendicular line that passes through vertex C and side AB.

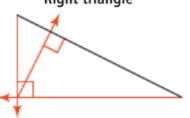

Construct a perpendicular line that passes through vertex B and side AC.

Where the two perpendicular lines intersect, label that point O.

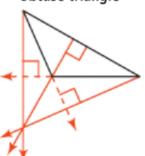
Now construct a segment that passes through vertex A, point O, and side CB.

Where is point O located? Are there any other properties that you can find?

Activity 3

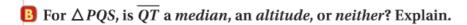

An **altitude of a triangle** is the perpendicular segment from a vertex of the triangle to the line containing the opposite side. An altitude of a triangle can be inside or outside the triangle, or it can be a side of the triangle.

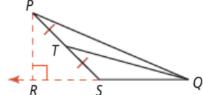
The point of concurrency of the altitudes is called the orthocenter.


The lines that contain the altitudes of a triangle are concurrent at the **orthocenter of the triangle**. The orthocenter of a triangle can be inside, on, or outside the triangle.

Acute triangle

Right triangle

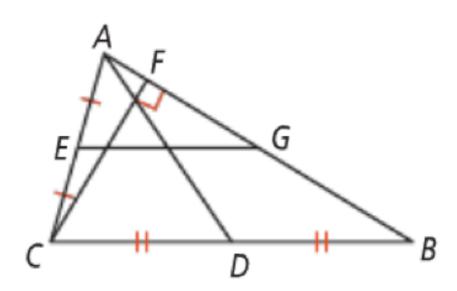

Obtuse triangle



Definition What does it look like? 1) point of concurrency of the Acute triangle Right triangle Obtuse triangle altitudes of a triangle Point C is the orthocenter Orthocenter How is it created? Where is it located? Altitudes (height of a triangle) Acute - inside Altitude - segment that is perpendicular going through a vertex and the opposite side Obtuse - outside Right - on the vertex of the right angle Altitudes can be inside, outside or a side of a triangle (see diagrams above)

Identifying Medians and Altitudes

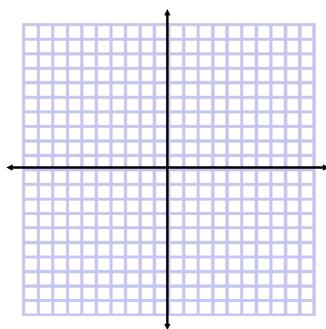
 \triangle For $\triangle PQS$, is \overline{PR} a median, an altitude, or neither? Explain.



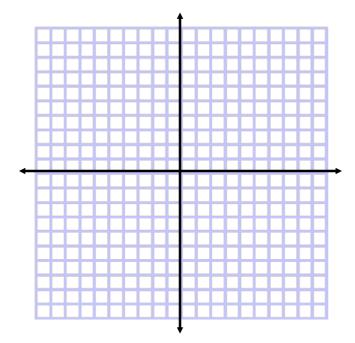
For $\triangle ABC$, is each segment a median, an altitude, or neither? Explain. a. \overline{AD}

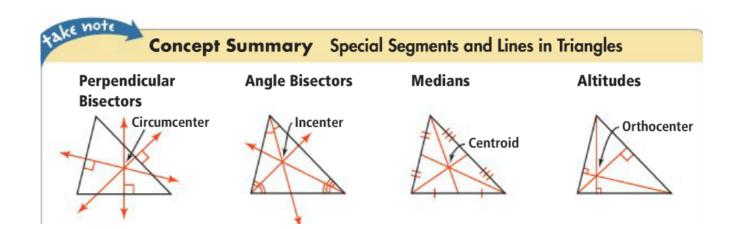
b. \overline{EG}

c. $\overline{\mathit{CF}}$

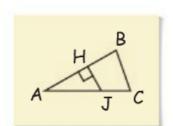


Finding coordinates of the Orthocenter



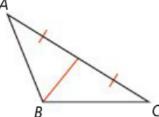

Finding the Orthocenter

 $\triangle ABC$ has vertices A(1,3), B(2,7), and C(6,3). What are the coordinates of the orthocenter of $\triangle ABC$?

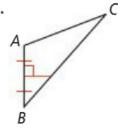

 $\triangle DEF$ has vertices D(1, 2), E(1, 6), and F(4, 2). What are the coordinates of the orthocenter of $\triangle DEF$?

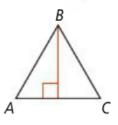
Do you UNDERSTAND?

- **5. Error Analysis** Your classmate says she drew \overline{HJ} as an altitude of $\triangle ABC$. What error did she make?
- **6. Reasoning** Does it matter which two altitudes you use to locate the orthocenter of a triangle? Explain.

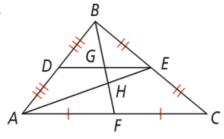

7. Reasoning The orthocenter of $\triangle ABC$ lies at vertex A. What can you conclude about \overline{BA} and \overline{AC} ? Explain.

homework

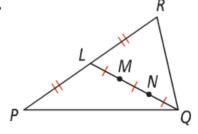

For $\triangle ABC$, is the red segment a *median*, an *altitude*, or *neither*? Explain.


11. A

12.

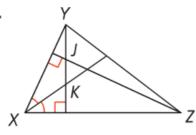


13.

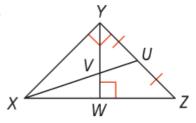


Name the centroid.

17.

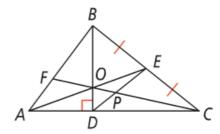


18.

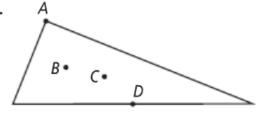


Name the orthocenter of $\triangle XYZ$.

19.



20.

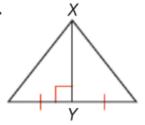

In Exercises 24-27, name each segment.

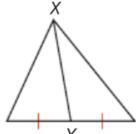
- **24.** a median in $\triangle ABC$
- **25.** an altitude in $\triangle ABC$
- **26.** a median in $\triangle BDC$
- **27.** an altitude in $\triangle AOC$



A, B, C, and D are points of concurrency for the triangle. Determine whether each point is a *circumcenter*, *incenter*, *centroid*, or *orthocenter*. Explain.

37.


38.


D

Is \overline{XY} a perpendicular bisector, an angle bisector, or neither? Explain.

43.

44.

- **11.** Median; it connects a vertex of $\triangle ABC$ and the midpt. of the opposite side.
- **12.** Neither; it does not have a vertex of $\triangle ABC$ as an endpoint.
- **13.** Altitude; it extends from a vertex of $\triangle ABC$ and is \perp to the opposite side.

median.

- **17.** *H*
- **18.** *M*
- **19.** *J*
- **20.** Y
- \cong . Therefore, \overline{XY} is also an \angle bisector. **44.** Neither; \overline{XY} connects vertex X and the **24.** \overline{AE} midpt., Y, of the opposite side, so \overline{XY} is a **25.** BD

43. Both; the markings show directly that \overline{XY} is a ⊥ bisector. The two ∆ formed are

congruent by SAS, so the two sat top are

- **26.** \overline{DE}
- **27.** \overline{OD}
- 37) a orthocenter; b incenter; c centroid; d circumcenter
- 38) a circumcenter; b centroid; c incenter; d orthocenter